National Center University Department of Computer Science and Information Engineering Course Lectured in English 2st Semester of Academic Year 2013/2014

Course	Theory of Computation I
Instructor	Sun, Min–Te(Peter)
Credit	3
Whole Year or	Semester
Semester	
Teaching goal	This course introduces the fundamental computation language and machine models.
Teaching content	(none)

Course	Optimization
Instructor	Chang, Chia-Hui
Credit	3
Whole Year or	Semester
Semester	
Teaching goal	The objective of this course is to introduce the fundamental theory behind machine learning. The students could learn how to design an objective function of unknown variables (parameters to be learnt) subject to some predefined constraints (enforced by given data). Based on the given problem, we will introduce the technique to find the optimal solution.
Teaching	Course Contents
content	 Introduction (1 weeks) Why this course? Some applications from ML: SVM, MM, HMM, CRF Understanding your optimization problem Course contents and schedule Course administrative Mathematical Preliminaries (1 weeks)

	matrix, calculus, convex set
3.	Part I: Unconstrained Optimization (3 weeks)
	One-dimension search method
	Gradient method
	Newton's
	Conjugate direction method
	Least-square analysis
	Neural networks
4.	Part II: Linear Constrained Optimization(4 weeks)
	Linear programming
	The simplex method
	Duality
	Quadratic programming
5.	Part III: NonLinear Constrained Optimization (4 weeks)
	Langrange multipliers
	KKT condition
	Convexity
	Duality
6.	Part IV: Maximum Likelihood Estimation (4 weeks)
	Mixture model + EM algorithm
	Hidden markov model + Dynamic programming
	Conditional random field

Course	Computer Architecture
Instructor	Cheng, Hsu-Yung
Credit	3
Whole Year or	Semester
Semester	
Teaching goal	Let the students understand the design and development of computer architecture
Teaching	Fundamentals of Computer Design
content	Instruction Set Principles and Pipelining
	Advanced Pipelining and Instruction Level Parallelism (ILP)
	Scoreboard, Tomasulo
	Branch Prediction

Memory Hierarchy, Cache
Virtual Memory
I/O, Storage
Multi–Processers

Course	3D Computer Graphics
Instructor	Yeh, Shih-Ching
Credit	3
Whole Year or	Semester
Semester	
Teaching goal	(none)
Teaching	1. Rasterization
content	 Transformation Projection Ray Casting Clipping Culling, Z-buffer Lighting Shading Texture Mapping Special effect: Bumping Noise Filtering Interfaces